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\‘\ The Exact And Asymptotic Formulas
i For The State Probabilities In Simple
Epidemics With m Kinds Of Susceptibles

by
p H. Lacayo and Naftali A. Langberg
ABSTRACT.
A population of susceptible individuals partitioned into m groups
and exposed to a contagious disease is considered. It is assumed that an
individual's susceptiblity at time t depends on the number of susceptible

individuals at time t in his group, and on the total number of infective

individuals at time t.

The progress of this simple epidemic is modeled by an m-dimensional
stochastic process. The components of this stochastic process represent the
number of infective individuals in the respective groups at time t, Exact
and approximate formulas for the joint and marginal state probabilities are
obtained. It is shown that the approximate formulas are simple functions of
time while, the derivations of the exact formulas involve tedious computations.

Key words: simple epidemics, different levels of susceptibility, con-

vergence in distribution, exponential, negative binomial, and multinomial

distributions.
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1. Introduction and Summary.

We say that a population of susceptible individuals (susceptibles),

exposed to a contagious disease, (disease) undergoes a simple epidemic
P 8 8 p pi

if the following four assumptions hold {Bailey (1975)1].

(1.1) At each point in time at most one susceptible contracts the disease.
(1.2) Once a susceptible contracts the disease he remains contagious for
the duration of the epidemic.

(1.3) Individuals neither join nor do they depart from the population. And
(1.4) All interactions between a susceptible and an infective individual
(infective) are ''equally likely'" to result in an infection.

Gart (1968) models the progress of a simple yaws epidemic based on a
data set obtained in New Guinea. He notices that the susceptiblity level
of an individual depends on his previous history of yaws, Gart divides the
susceptibles into two groups: those with a positive yaws history, and those
with a negative yaws history. He replaces, at least implicitly, Assumption
(1.4) by:

{1.5) All interactions between a susceptible that has a specified yaws
history and an infective are '‘equally likely' to result in an infection.

In this paper we follow Gart (1972) and consider a population of suscep-
tibles partitioned to m subpopulations, m = 2, 3, ..., and exposed to a disease.
We assume that the susceptibility level of an individual varies according to
his membership in the various subpopulations.

Let To be the first time tnere is at least one infective in each of the

subpopulations, n, be the number of susceptibles in the rEE-subpopulation




|

at To’ br be the number of infectives in subpopulation r at To, r=1, ..., m,

and let n = Z?sl n_.

We describe the progress of the epidemic among suscepti-
bles by an m-dimensional stochastic process: §n(t) = [xn,l(t)""’xn,m(t)]’
te{0,»). The components of §n(t) represent the number of infectives in the
respective subpopulations at time t measured from To. Although the infection
rates of the various subpopulations are not used explicitly we present them

for reference purposes.

Definition 1.1. Let r =1, ..., m, and te(0,»). Then the infection

rate of subpopulation r at time t is given by

. -1
(1.6) ﬁiﬁ+h P{Xn’r(t+h)-xn’r(t)=1[)_(_n(t)}.

We say that a population undergoes a simple Gart epidemic if Assumptions

(1.1) through (1.3) and the following one are satisfied.

(1.7) The infection rate of subpopulation r at time t depends on the total
number of infectives at time t, and on the number of susceptibles in subpop-
ulation r at time t, r = 1, .,., m, tel0,x).

Note that Assumption (1.7) is the rigorous formulation of the statement: all
interactions between a susceptible that belongs to a specified subpopulation
and an infective are ''equally likely" to result in an infection,

In Section 2 we construct a variety of m-dimensional stochastic pro-
cesses. These processes can be used to model the progress of simple Gart
epidemics among susceptibles. Section 3 contains formulas for the joint and
marginal state probabilities: P{Xn’r(t)-brakr,ral,...,m}, and P{xn,r(t)'br’q}’
r=1, ..., m te(0,=), where k;, ..., k_, qe{0,1,...}. These formulas are

calculated without the traditional use of the differential equations associated




with the state probabilities. This is done by utilizing a formula for the
distribution function of a sum of independent exponential random variables
(rva's) given by Billard, Lacayo, and Langberg (1979).

X (t). Gart (1968),

m
Let ulp soey um 5(0,0), and xn(t) = r=1 n,r

following the classical approach, assumes that the infection rates at time t

of tae subpopulations arc given by
(1.8) “r(nr+br'xn,r(t))xn(t)’ r=1, ..., m, te{0,»),

These rates have the property, shown in Secvion 2, that the duration time of

the simple Gart epidemic tends to zero as np > for £ =1, ..., m. To obtain
approximations to the joint and marginal state probabilities when Ny, eee, M
are sufficiently large we adjust the above rates, and assume that the infection

ratesat time t of the subpopulations are given respectively by

-1
(1.9) n, ur(nr+br

K, p X (W), T =1, L0, m, tel0,®),
In Section 4, we obtain, under Assumption (1.9), approximations to the quan-

. H = - m =
tities: P{X_  (t)-b .=k ,r=l,...,u}, g{xn'r(t)-ur-q}. P{X_(t) 2£.1b£ ql,

EX, (t), Exn,r(t)’ Var(xn(t)}. and Var{xn’r(t)}, when n,, ..., n_ are
sufficiently large. These approximations are expressed as simple functions of

t while, the derivations of the exact values of these quantities involve com-

plicated computations, as we illustrate in Section 3.

4
3
3




2. Model Construction.

In this section we construct a variety of m-dimensional stochastic
processes. These processes can be used to describe the progress of simple
Gart epidemics among susceptibles,

First, we introduce some notation, Let Tn k,the kEE-interinfection time,
r

be defined as the time that elapses between the u+kel and ti:e b+k infection,

= D, k=l,...,n, and S , Further, let

k
Y= = =
£ 1,.-;,“- Let Sn’o Sn’k Zq:lTn’q’ n,n"l
°n,o

The rva &k specifies the subpopulation membership of the b + k infective,
?»

k=1, ..., n. Finally, let I be the indicator function, and

k-1
cn,k,r = nr - ano I(En’qsr)’ k=1, ..., n, r =1, ..., m. Note that
cn’k,r 2 cn,n,r 20, k=1, ...,n, r=1, ..., m
Forr=1, ..., m k=0, ..., n, and te(0,»), the following event

equality holds.

n
- = = q = =
(2.1) (xn’r(t) b_=k) qfk(Sn’q$t<Sn'q*1, Xj-1 I(En’j r)=k).

Thus, to construct the stochastic process En(t) it suffices to determine the
distribution function of the random vector (rve) . n k,En k,k-l,...,n].
— ’ ’
Next, we determine the distribution function of this rve. Let a(n,k,j,r),

k=1, ..., n, j=1, ..., n, = 1, ..., m, be positive real numbers. Assume:

2.2) P“n,k""n q,q-o....,k-l} -

»

. a(n,k,cn,k.r.r){Z}_la(n,k,cn’k‘t,z)}‘1, k=0, ..., n,

r=1, ..., m, and;

= 0, and En,k’ k=1, ..., n, be rva's assuming values in the set {1,...,m}.

——

il




(2.3) The conditional rva's {T_,|¢ ,q =0,...,k-1}, k =1, ..., n, are
n,k'’n,q
independent exponentially distributed with means equal respectively to
m 2 = 1
{Z£=la(n,k,cn’K,£,L)} .
Clearly, Assumptions (2.2) and (2,3) determine the distribution function of
the rve [Tn,k’gn,k’k=1""’nJ'

Note that by the memoryless property of exponential rva's [Barlow,
Proschan (1975), p. 561, Equation (2.1), and Assumptions (2.2), (2.3), the
infection rates at time t of the processes constructed in this section are
equal to a(n,Xn(t)-b+1,nr+br-xn.r(t),r), r=1, ..., m, te(0,»), Thus,
these processes can be used to describe the progress of simple Gart epi-
demics among susceptibles.

The classical model, considered by Gart (1968) and (1972}, follows
by setting a(n,k,j,r) = e, (b+k~1)j. By Assumption (2.2) the duration time

. . X . s AP\ | S m -1
of the classical simple Gart epidemic is equal to E{qulb(b*q-l)zz=1grcn’q,r] }.
Tnus, it is less than or equal to ( nin a )-lzn [(b+q-1)(n-q+1)]'1. Conse-

1<8sm £ =1
quently, the duration time of classical simple Gart epidemic tends to zero
as nl + o for £ =1, ..., m. In Section 4 we investigate the asymptotic
vehaviour of simple Gart epidemic models determined by letting
a(n,k,j,r) = n;lar(b+k-1)j. Following Severo (1969) we can define
atn,k,j,r) = o_ n(bek-1)%5", Se(-»,%), 0, Ae(0,=), and thus, construct

extensions to the simple epidemic models used and motivated by him. In

particular for 6§ = 0, 6 = A = 1/2, we get infection rates used by McNeil (1972)

to describe simple epidemic situations.




3. Formulas for the State Probabilities.

- N Tl
Let q, kl’ cees kme{o,...,n}, k = Lkl,...,ka, and k = zralkr'
Througihout we assume that 0 < k £ n, Further, let Ul’ UZ’ .e

of independent exponential rva's with means equal to 1, anc His Hos oo be

., be a sequence

a sequence of positive real numbers.
This section contains formulas for the joint and marginal state prob-
abvilities: Pn’hﬁt) = P{§n(t)-§f_j, and P n,q ,r(t) = P{X (t)-br=q},
r=1, ..., m te(0,»). These formulas are calculated without the tradi-
tional use of the differential equations associated with the state probabil-
ities. Rather, we utilize an available formula for the distribution function
of a sum of independent exponential rva's. For the sake of completeness we
present this formula.
Theorem 3.1. (Billard, Lacayo and Langberg (1979), Theorem.1i. Let
-1 M j +1
be a positive integer, and £ (j) = (-1) y T (u)d ,
i . PR N q
P RARERS P q=1
j =M, Mel, ... . Then for te(0,x).
M L . j .
(3.1) P{lga1 Yg LSt} Liaw L@ (076G Y.

To aid in computing tie joint and marginal state probabilities we
introduce the following -otation. Let £k = £ ,...,lkJ, £°=0, ll,...,tke{l,...,m},
k
= {£k: 2 .OI(£_=r)=kr,r=1,...,m}, and A

j £
k q q T,j,q =140
By Equation (2.1) we obtain that for te(0,x)

c,ol(le=r)=q}. j=aq, q+l,... .

(3.2) Pn.h(t) = .

-Ekpfsn L ST<S, k+1|5n q q,q 0,...,k}P{€ ,q 0,...,k}1(£keBk),

AN, e i i

A . - RIURRLELT? - Suntams, ARSI T S me———
. RNt A 0 e .




7 i
and that
(3.3) P o (%) =

ngq ) P{s 0,35t Sn, 1180, e ber0mUs a3 IPLE, (= sem0 L T S )

'ﬂ

(t) it suffices to evaluate

Thus, to compute Pn,EFt) and Pn,q,r

P{g =£q,q=0,...,k} and P{S_ st<s _ _|¢& q=0,...,k}.

n,q n,k n,k+1 n,q=£q’

Now, we present formulas for these probabilities, Let
D &, =n -39 1 (Lar), q=1 k + 1, and
n,k,r ék’ T j=° J » 3 ey »
n(nk, 8, = I a(n,q,0p 4 ged)r), 4= 1, e, kv L
First, by Assumption (2.2)
.4 P £ ,q=0,...,k} =
(3.4) (e, q~4q 40 }
k m I1(€ =r)

= 1 Cin(n,k,8 )} 1 a0,y o Geain) T,
q=1 r= Ll

Next, let fk(ul,...,uk,t) be the density function of the

1 -
rva anl Mg Uys- Then for k =1, 2, ..., and te(0,)
.5 P U <t< =
(3.5) {Zq.luq q Zq=1 a q
t -y, ., (t-u)
Tkl _ -1
"l fupreeomoudu = iy By Gy t).

Thus, by Assumption (2.3) and Theorem 3.1




(3.6) P{S St(sn,k+1|€n,q=£q’q.0""’k} =

n,k

[ o-n(n,k,4 10t

n+]-1tJ 1

p;, 1 iq*
. . ) Coi Win(n,k, 4 ,q))
J n J- J1+..-‘_'Jn J q=1 ' !

k+j j-1
-lgw -1 t
(ko Bk L T 8 e o

k+1 j +1
T {n(n,k,£,q)}
L g=1

Consequently, the foruulas for the joint and marginal state probabilities

can be obtained from (3.2) and (3.3) by subtitution.

k=0

1
k=n

A
1 sk <n.

1




4. The Asymptotic Behaviour.

This section contains our main asymptotic results. All limits are
calulated as np > for £ = 1, ., m,

For tne sake of completeness we present two definitions.

Definition 4.1. Let Le{l,2,...}, and pe(V,1). We say that tne rva Y

has a negative binomial distribution with parameters £, and p, and write

Y A NB(L,p) if

£+q-1

(4.1) P{Y=q} = [ q

]chl-p)“, q=0,1,

Definition 4.2. Let e, £e{1,2,...}, and Yis ceen Y €(0,1) such that

e . 1 -t - J 3 1 i i~
Zj=1 Yj = 1. #We say that the rve he = {Ll,...,he} has a multinomial distri

bution with parameters £, Yiseees Yoo and write [ MN(Z,YI,...,Ye) if

e £, e
(4.2) P{W.=L.,j=1,...,e} = (L! 01 v.)y/(nme,
i je1d a1
€
q,unﬁedmuuﬁ,jﬂ£j=L

Let a = Zf=1 a., B.(t) = e'“ttl-(l-e'“t)(1-ara'1)3'1, Y(t) ~ Ns(b,e ®t

. -1 -1
Yr(t) ~ NB(ber(t)), and ym(x) ~ MN(x,ala yeeesa B }, r=1, ..., m,
k=1, 2, ..., te(0,=).

Assume throughout that a(n,k,j,r) = n;l ar(b+k-1)j, j =

1

—
-

.

.

.
-

=
-

r=1, ..., myk=1, ..., n,n=1, 2, .., ., First, we show that for te(0,=)

: m v (Tm _
(4.3) tim P (1) = PLY(t)=] _ k Il (I k )=k},
4.4) €im P{X_(t)-b=q} = P{Y(t)=q}, and
(4.5) Gim P o () = PIY (t)=q}, T = 1, ..., m.
i T 7 « f;j: B
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Next, we show that for t, Be(0,«)
(4.6) Lim E{xn(t)}B = E{Y(t)}?, and that
- B _ B _ .
4.7 Bim E{(X _()}" = E(Y (0)}", r =1, ..., m.

L]

In particular it follows from Statements (4.6) and (4.7) that for te(0,»)

(4.8) Lim EX_(t) = be®t-1),
(4.9) tim Var{X_(t)} = be?%t-e%Yy,
(4.10) tim BX| _(t) = b((sr(t))‘l-l), r=1, ..., m, and

o (B (1)) "~

(4.11) i Var{X (%)}

Sen™. =10,

Note that tne approximate formulas given in Statements (4.3) through (4,5),

and in Statement (4.3) through (4.11) are indeed simple functions of time.

The following three lemmas are needed to prove Statements (4,3) through (4.5).

Lemma 4.1. Let ke{l1,2,...}, and (1,

m
4.12 £im P =£ ,q=1,...,k} = 1
( ) im {gn,q q q } !

Proof. Let £ = {, Then P{g_ =
L n,q

s Zke{l,...,m}. Then

< o
zq=11(£q-r)
(a.a ™) .

1 r

£ ,q=1,...,k} =
q*4 J

= P{g = |& £.,j=v,...,q-1}. Consequently the result of the lemma

gl ™d A mIT

follows by Assumption (2.2).}|

Lemma 4.2. Let ke{l,2,...}, El, ‘e

the sequence of conditional rva's: klz £ ,4=0,...,k-1}, n =1,

converges in distribution to the rva E:=1°

o L e{l,...,m}, and Lo = 0,

n,q g
-1 (beq-1)-1u
(b+q-1)=70

jar_,.muw-_wNTTuu

Then

2, ...,

a
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Proof. To prove the result of the lemma it suffices, by the Cramer-
Wold device LBillingsley (1vv8), p. 49), to show that the sequence of con-
n’l,...,Tn,klgn,q=ﬂq,q=0,...,k-l}], n=1, 2, ...,
1

converges in distribution to the rve {a” b-lul,...,a'l(b+k-1)'luk}.

ditional rve's: ({7

The preceeding statement follows from Assumption (2.3). ||
Lemma 4.3. Let d, k, be two positive integers. Further, let
{Ul:d+k—1""’Ud+k-1:d+k-1} be the order statistic of a sample of size d + k - 1

taken from the population U Then the rva's E§=1(d+q-1)'luo and U

1’ k:d+k-1

are equal in distribution.

Proof. Let UD,d+k-1 = 0. Then tihe spacings: Uk-q+1:d+k-1-uk-q:d+k-l,

q=1, ..., k, are independent exponentially distributed rva's with means
respectively equal to (d+q-1)'1[Barlow Proscnan (1975) p. 59]. Thus, the

rva's Z:=1(d+q-1)'1U and Z } are equal in distri-

q= 1 k -q+1:d+k-1" k -q:d+k-1
bution. To complete the proof of the lemma we note that
k
Lae1Wk-qo1rdek-1"V-qeaek1? = Vkrdeicens 1
We are ready now to prove Statements (4.3) tarough (4.5). First, we
prove Statement (4.3).

Theorem 4.4. Let kl’ ooy kme{O,l,...}, k = {k "km}' k = zm k

r=l 'r’
and te(0,#). Then £im Pn,EFt) = P{Y(t)ak}P{Em(k)akj.

Proof. Let B, pe defined as in Section 3, and let ék € B, . Then by

m LK
Lemma 4.1 £im P{& =£ q=1,...,k} = 1 (a a ) r. Further, by Lemmas 4.2,
r=]
4.3, and equation (3 5) Lim P{s ' St<S k+1|5n,q=£q’ q=0,...,k} =
Pt qm1 (B*a-1)° u st< 1(b+q-1) u } = (bek) [::T](k+1)e-abt(1-e'“t)k,

B i e e — - [P — -

e
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m
Finally, we note that By contains k!/( I kr!) elements. Consequently, the
r=1
result of the theorem follows from Equation (3.2). ||
Let te(0,»), and Em(t) = {Zl(t),...,Zm(t)} be a rve such that
m . m -1 -1 m -at
(2,100 2, (00} v MN(E 12 (t) 0007, .. e 7)), and O Z (t) ~ NB(b,e™" ).,

By Theorem 4.4 and a well known result [Billinsgley (1968), p. 16} we conclude,

Corollary 4.5. Let te(0,»). Then the sequence of rve's En(t) - b,
n=1, 2, ..., converges in distribution to the rve gm(t).
From Corollary 4.5 and the Cramer-Wold device we obtain,

Corollary 4.6. Let r =1, ..., m, and te(0,»)., Then the two sequences

of rva's xn(t)-b, and Xn r(t)-br, n=1, 2, ..., converge in distribution to
1

! .
2=1 Zz(t) and Zr(t) respectively.

Now, we prove Statements (4.4) and (4.5).

Theorem 4.7, Let qe{0,},...}, r=1, ..., m, and te(0,»), Then
(a) £&im P{X_(t)-b=q} = P{Y(t)=q}, and (b) Lim P (t) = P{Y_(t)=ql,

n n,q,r r

Proof. Part (a) follows clearly from Corollary 4.6. To prove part (b)

it suffices by Corollary 4.6 to evaluate P{Zr(t)=q}.
. : - em

It is well known that for k = 1, 2, ..., P{Zr(t)=q|Z£=IZ£(t)=k} =
k
q

o {b+k-1{|k| -ab - - -1 k-

[ ](ara’l)q(l-ara'l)k'q, Q=0, ..., k. Thus, P{Z_(t)=q} =

[q:(b-l):J'le'“bt[(l-e’“‘)ara'lquz;q(b+k-1):t(k-q):J'ltcl-ef“?)(l-ara’l)3k'“

-1 -abt. . - “1,qpe_-u beq-lgm - - -1, k- ~
Cqt (0-1)137 e P L (1-e™%)a a™h J9f7e7U,0* Toeqt k-1 u(1-e7*) (1-a 071 a0
[+}

beq-1 b
. [ e ](Br(t)) (-8 )9, ||

- 3
- - - Gy -~ g ity - o tr— .- EE s e - - - - A
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~Ow We Jotornine tuae convergence of tiae monents.
Theorem 4.8. Let t, Be(o,=). Then &im E{X_()}® = B(v(t)}’,

Proof. First, we note that

(4.13) E(X_(2)}® = 8" yBlpix_(t)>yay =
0

b
8f ¥ lay + 8[7(0+2)P IR ix_(0)-bo2}az =
(o} (o]

b® + Z:=1E(b+q)8 - (b¢q-1)6]P{Xn(t)-qu},

m -1
= coe Cc s i =
Next, for k = 1, 2, s zr=l noa n,k,T a, anu for q =1, 2, ...,

b+q-1<5 2bq. Thus, by Lemma 4.3

1. K -1 _
(4.14) P{X_(t)-b2k} = P{Sn,kst}slﬂzq=lq U s2abt} =

-2abt . k
= (1-"%5% =1, 2, ... .

Finally, we note that

-2abt

(4.15) Z;=l[(b+q)B-(b+q-1)B](1-e-2abt)qs(2b)sz:=lq8(1-e 19 < w,

Consequently, the result of tihe theorem follows by Corollary 4.6 and
the dominated convergence theorem iLo&ve (1963), p. 125]. ||
Finally, we prove Statement (4.7).
Theorem 4.Y. Let r =1, ..., m, and t, Be(o,#). Then
. B _ . 8
dim E{Xn r(t)} h{Yr(t)} .

?

Proof. Note that E{X (t)}B =
— n,r
o 8 .
=b + {q_lt(br+q) -(br+q-1)B]P{Xn’r(t)-erq}, that by Inequality (4.14)
P{X_ (t)-b 2q} s P{X (t)-b2q} s (1-e”2%P%39 0 21, 2, ..., and that
1)
o B 11811 a"200t g By» B, ,-2abt.q
Zq_lt(br+q) (b *q-1)B1(1-e )4 s () qulq (1-e 19 < w,
Consequently, the result of the theorem follows by Corollary 4.6 and

the dominated convergence theorem. ||

A et s e
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